Serlo: EN: Vector space: properties
{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}
In this chapter we will consider some properties of vector spaces which can be derived directly from the definition of a vector space. So every vector space must satisfy these properties, no matter how abstract or high-dimensional.
Overview
In this section we use again the operation symbols "" and "" to distinguish the vector addition and the scalar multiplication with the field addition "" and the field multiplication "".
We want to derive simple properties and rules from the eight axioms of the vector space. Since we have demanded in the axioms only the existence of the zero vector and the additive inverse, the following questions arise first: Is the zero vector unique or are there several zero vectors? Is the inverse element of addition unique or can there be more than one? The answer to both questions is:
- In every vector space there is exactly one zero vector . So nope, there cannot be more than one zero vector in a vector space.
- The inverse with respect to addition is unique. So for every vector there is exactly one other vector with .
Further statements that we will prove in the following are:
- For every we have that: .
- For every we have that: .
- From it follows that or .
- For all and all we have that: .
In the following, we denote by a vector space over a field .
Uniqueness of the zero vector
Datei:Nullvektor im Vektorraum ist eindeutig.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Inverses are unique
Datei:Additives Inverse ist eindeutig.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Hinweis
Scaling by zero results in the zero vector Vorlage:Anker
Datei:Nullskalierung ergibt den Nullvektor.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Frage
Scaling the zero vector again gives the zero vector
Datei:Skalierung Nullvektor.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Scalar multiplication leaves no zero divisors
Datei:Nullteilerfreiheit der skalaren Multiplikation.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Scaling by a negative scalar
Datei:Skalierung eines Vektors mit einem negativen Skalar.webm
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Hinweis
{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}