Serlo: EN: Monotonic functions
{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}
Monotony criterion
The monotony criterion is quite intuitive: if the derivative of a function (i.e. the slope) is positive, it goes up, if the derivative is negative, it goes down. Mathematically, if the derivative of a differentiable function is non-negative or (non-positive) on an interval , then is monotonously increasing (or decreasing) on . If is even strictly positive (or negative) , then is strictly monotonously increasing (or decreasing).
In the first case, even inversion of the statement is true: If a differentiable function is monotonously increasing on , then and if the function is monotonously decreasing on , then then . However, the inversion does not hold true in the strict case, monotone functions do not always have or . For instance, is strictly monotonous, but .
Mathe für Nicht-Freaks: Vorlage:Satz
Proof
The four directions "" follow from the mean value theorem. The two directions "" follow by differentiability of the function:
Mathe für Nicht-Freaks: Vorlage:Beweis
Examples: monotony criterion
Quadratic and cubic functions
Mathe für Nicht-Freaks: Vorlage:Beispiel
Mathe für Nicht-Freaks: Vorlage:Frage
Mathe für Nicht-Freaks: Vorlage:Warnung
Exponential and logarithm function
Mathe für Nicht-Freaks: Vorlage:Beispiel
Mathe für Nicht-Freaks: Vorlage:Frage
Trigonometric functions
Mathe für Nicht-Freaks: Vorlage:Beispiel
Mathe für Nicht-Freaks: Vorlage:Frage
Mathe für Nicht-Freaks: Vorlage:Beispiel
Mathe für Nicht-Freaks: Vorlage:Frage
Exercise
Monotony intervals and existence of a zero
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Necessary and sufficient criterion for strict monotony
Mathe für Nicht-Freaks: Vorlage:Aufgabe
{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}