Serlo: EN: Monotonic functions

Aus testwiki
Zur Navigation springen Zur Suche springen

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}

Monotony criterion

The monotony criterion is quite intuitive: if the derivative of a function (i.e. the slope) is positive, it goes up, if the derivative is negative, it goes down. Mathematically, if the derivative f of a differentiable function f is non-negative or (non-positive) on an interval (a,b) , then f is monotonously increasing (or decreasing) on (a,b). If f is even strictly positive (or negative) (a,b), then f is strictly monotonously increasing (or decreasing).

In the first case, even inversion of the statement is true: If a differentiable function is monotonously increasing on [a,b], then f(x)0 and if the function is monotonously decreasing on [a,b], then then f(x)0. However, the inversion does not hold true in the strict case, monotone functions do not always have f(x)>0 or f(x)<0 . For instance, f(x)=x3 is strictly monotonous, but f(0)=302=0.

Mathe für Nicht-Freaks: Vorlage:Satz

Proof

The four directions "" follow from the mean value theorem. The two directions "" follow by differentiability of the function:

Mathe für Nicht-Freaks: Vorlage:Beweis

Examples: monotony criterion

Quadratic and cubic functions

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Frage

Mathe für Nicht-Freaks: Vorlage:Warnung

Exponential and logarithm function

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Frage

Trigonometric functions

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Frage

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Frage

Exercise

Monotony intervals and existence of a zero

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Necessary and sufficient criterion for strict monotony

Mathe für Nicht-Freaks: Vorlage:Aufgabe

{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}