Serlo: EN: Direct comparison test
{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}
In this chapter we will study an important convergence criterion called the direct comparison test. This criterion allows us to deduce the convergence behavior of a series by comparing it to that of another series. That way we can answer questions regarding the convergence of a series by considering a simpler series. Using this criterion we can estimate upper or lower bounds of the series, until we hopefully find a proof for the convergence behavior.
The direct comparison test is also used to proof other criteria such as the quotient test and the root test, which are both useful tools to have when solving problems about the convergence of series.
Direct comparison test: majorant
There are two versions of the direct comparison test. The first one is a test for convergence and involves finding a majorant of the series:
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Frage
Mathe für Nicht-Freaks: Vorlage:Hinweis
Direct comparison test: minorant
The second comparison test is similar, but we use it to determine the divergence of a series, and it involves finding a minorant of that series.
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Hinweis
Mathe für Nicht-Freaks: Vorlage:Hinweis
Mathe für Nicht-Freaks: Vorlage:Warnung
Examples and exercises
Direct comparison with majorant
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Direct comparison with minorant
Datei:Minorantenkriterium Aufgabe Lösung.webm Vorlage:Noprint
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Corollary: Limit comparison test
For series with positive summands there is another test called the limit comparison test, which we can derive form the direct comparison test:
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Frage
Mathe für Nicht-Freaks: Vorlage:Beispiel
Mathe für Nicht-Freaks: Vorlage:Hinweis
Mathe für Nicht-Freaks: Vorlage:Aufgabe {{#invoke:Mathe für Nicht-Freaks/Seite|unten}}