Pseudoprimzahlen: Spielereien

Aus testwiki
Zur Navigation springen Zur Suche springen
  • Ich kenne von einer Pseudoprimzahl nur die Primzahlbasen zu denen die Pseudoprimzahl pseudoprim ist, möchte aber alle Basen bekommen, zu denen die Pseudoprimzahl pseudoprim ist, ohne jede natürliche Zahl 2 zu testen.

Beispiel 65:

die Primzahlbasen (a<65) zur Pseudoprimzahl 65 sind 31, 47 und 53.

Demzufolge ist 65 auch zu allen Potenzen dieser Primzahlen pseudoprim:

n 31 mod 65 47 mod 65 53 mod 65
2 961 51 2209 64 2809 14
3 29791 21 103823 18 148877 27
4 923521 1 4789681 1 7890481 1

Damit haben wir als Basen (a<65), zu denen die Pseudoprimzahl 65 pseudoprim ist, die Zahlen 14, 18, 21, 27, 31, 47, 51, 53 und 64. Jetzt fehlen noch die Basen der Form (65 - a):

65 - 53 = 12; 65 - 51 = 14; 65 - 47 = 18; 65 - 31 = 34; 65 - 27 = 38; 65 - 21 = 44; 65 - 18 = 47; 65 - 14 = 51.

Nun haben wir alle Basen a mit a<65, zu denen die 65 Pseudoprim ist: 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53 und 64.

Halt: es fehlen noch 8 und 57.