PCRT.I.E.05

Aus testwiki
Zur Navigation springen Zur Suche springen

PCRT.I.E

05 Einmal Rechtsherum im Kreis in der (S,p;N=const)-Ebene

A Wärme hinein, Qa > 0, Arbeit hinaus, Wa < 0: (N,p1,S1) -> (N,p1,S2)

Qa = Qp1,N(S2,S1)>0 (a:p,S;p1S1p1S2),dN=0
(01) = 52nRT0(p1p0)2/5[exp(25S2nR)exp(25S1nR)] (p,S;p1S1p1S2),dN=0
= 52nR[T(N,p1,S2)T(N,p1,S1)] (T;T11T12),dN=0
= H(N,p1,S2)H(N,p1,S1) (H;H11H12),dN=0
Wa = Wp1,N(S2,S1)<0 (a:p,S;p1S1p1S2),dN=0
(02) = nRT0(p1p0)2/5[exp(25S2nR)exp(25S1nR)] (p,S;p1S1p1S2),dN=0
= nR[T(N,p1,S2)T(N,p1,S1)] (T;T11T12),dN=0
= p1[V(N,p1,S2)V(N,p1,S1)] (V;V11V12),dN=0
= [U(N,p1,S2)H(N,p1,S2)][U(N,p1,S1)H(N,p1,S1)] (U,H;[UH]11[UH]12),dN=0

B Arbeit hinaus, Wb < 0: (N,p1,S2) -> (N,p2,S2)

Wb = WS2,N(p2,p1)<0 (b:p,S;p1S2p2S2),dN=0
(01) = 32nRT0[(p2p0)2/5(p1p0)2/5]exp(25S2S0nR) (p,S;p1S2p2S2),dN=0
= 32nR[T(N,p2,S2)T(N,p1,S2)] (T;T12T22),dN=0
= U(N,p2,S2)U(N,p1,S2) (U;U12U22),dN=0

C Wärme hinaus, Qc < 0, Arbeit hinein, Wc > 0: (N,p2,S2) -> (N,p2,S1)

Qc = Qp2,N(S1,S2)<0 (c:p,S;p2S2p2S1),dN=0
(01) = 52nRT0(p2p0)2/5[exp(25S1nR)exp(25S2nR)] (p,S;p2S2p2S1),dN=0
= 52nR[T(N,p2,S1)T(N,p2,S2)] (T;T22T21),dN=0
= H(N,p2,S1)H(N,p2,S2) (H;H22H21),dN=0
Wc = Wp2,N(S1,S2)>0 (c:p,S;p2S2p2S1),dN=0
(02) = nRT0(p2p0)2/5[exp(25S1nR)exp(25S2nR)] (p,S;p2S2p2S1),dN=0
= nR[T(N,p2,S1)T(N,p2,S2)] (T;T22T21),dN=0
= p2[V(N,p2,S1)V(N,p2,S2)] (V;V22V21),dN=0
= [U(N,p2,S1)H(N,p2,S1)][U(N,p2,S2)H(N,p2,S2)] (U,H;[UH]22[UH]21),dN=0

D Arbeit hinein, Wd > 0: (p2,S1) -> (p1,S1)

Wd = WS1,N(p1,p2)>0 (d:p,S;p2S1p1S1),dN=0
(01) = 32nRT0[(p1p0)2/5(p2p0)2/5]exp(25S1S0nR) (p,S;p2S1p1S1),dN=0
= 32nR[T(N,p1,S1)T(N,p2,S1)] (T;T21T11),dN=0
= U(N,p1,S1)U(N,p2,S1) (U;U21U11),dN=0

E Wärme gesamt, Qa + Qc > 0: (N,p1,S1) -> (N,p1,S2), (N,p2,S2) -> (N,p2,S1)

Qa+Qc = Qp2(S1,S2)+Qp1(S2,S1)>0 (a+c:S,p;1112,2221),dN=0
= 52NkT0[(p1p0)2/5(p2p0)2/5]
(01) ×[exp(25S2Nk)exp(25S1Nk)] (S,p;1112,2221),dN=0
= 52Nk[T(N,p2,S1)T(N,p2,S2)]
+52Nk[T(N,p1,S2)T(N,p1,S1)] (T;T11T12T22T21T11)
= H(N,p2,S1)H(N,p2,S2)
+H(N,p1,S2)H(N,p1,S1) (H;H11H12H22H21H11)
p,STdS = p1,S1p1,S2TdS+p1,S2p2,S2TdS+p2,S2p2,S1TdS+p2,S1p1,S1TdS (S,p;1112222111),dN=0
0 = p1,S2p2,S2TdS+p2,S1p1,S1TdS (S,p;1222,2111),dN=0
(02) p,STdS = S,p1,p2TdS (p,S;1112,2221),dN=0

F Arbeit gesamt, Wa + Wb + Wc + Wd < 0: (p1,S1) -> (p1,S2) -> (p2,S2) -> (p2,S1) -> (p1,S1)

Wa+Wc = Wp2(S1,S2)+Wp1(S2,S1)<0 (p,S;1112,2221),dN=0
(01) = nRT0[(p1p0)2/5(p2p0)2/5]
×[exp(25S2nR)exp(25S1nR)] (p,S;1112,2221),dN=0
= nR[T(N,p2,S1)T(N,p2,S2)]
nR[T(N,p1,S2)T(N,p1,S1)] (T;T11T12,T22T21),dN=0
(02) = +[U(N,p2,S1)H(N,p2,S1)]
[U(N,p2,S2)H(N,p2,S2)]
+[U(N,p1,S2)H(N,p1,S2)]
[U(N,p1,S1)H(N,p1,S1)] (U,H;[UH]11[UH]12,[UH]22[UH]21])
Wb+Wd = WS1(p1,p2)+WS2(p2,p1)<0 (p,S;1222,2111),dN=0
(03) = 32nRT0[(p1p0)2/5(p2p0)2/5]
×[exp(25S2nR)exp(25S1nR)] (p,S;1222,2111),dN=0
= +32nR[T(N,p1,S1)T(N,p2,S1)]
+32nR[T(N,p2,S2)T(N,p1,S2)] (T;T12T22,T21T11),dN=0
(04) = +[U(N,p1,S1)U(N,p2,S1)]
+[U(N,p2,S2)U(N,p1,S2)] (U;U12U22,U21U11),dN=0
p,SpdV = p1,S1p1,S2pdVp1,S2p2,S2pdV
p2,S2p2,S1pdVp2,S1p1,S1pdV (p,S;1112222111),dN=0

G Verhältnis und Summe der Integrale von dW = -pdV und dQ = +TdS

(01) p,S2,S1pdV / S,p1,p2TdS = Wa+Wb+Wc+WdQa+Qc = 100% (p,S;1112222111)
(02) p,SpdV / p,STdS = Wa+Wb+Wc+WdQa+Qc = 100% (p,S;1112222111)
(03) p,S2,S1pdV + S,p1,p2TdS = Qa+Wa+Wb+Qc+Wc+Wd = 0 (p,S;1112222111)
(04) p,SpdV + p,STdS = Qa+Wa+Wb+Qc+Wc+Wd = 0 (p,S;1112222111)

Übung a

Wie Übung 21.a für die (S,p;N=const)-Ebene.

Übung b

Wir stellen uns vor, wir haben die U(S,p,N=const)- und die H(S,p,N=const)-Fläche im (S,p,N=const)-Koordinatensystem gegeben. Wie berechnen wir Wa,Wb,Wc,Wd,Qa,Qc bzw. welchen Flächen entsprechen diese Arbeits- und Wärmeströme? Welche Anforderungen müssen wir an die U- und H-Flächen stellen, damit die Flächen der Arbeits- und Wärmeströme die gleichen Vorzeichen haben, wie es die Vorstellung aus der Betrachtung der Formeln vorgibt?