Mizarkommentare zu Gerd Fischers Lineare Algebra/ Lineare Abbildungen

Aus testwiki
Zur Navigation springen Zur Suche springen

2.1 Beispiele und Definitionen

2.1.1.

(a) Für abstrakte Polynome siehe 1.3.5.. Die konkrete Funktion ax+b ist gegeben durch AffineMap(a,b) (FCONT_1:def 4).

(b) Drehung um t ist Rotate(t) (JORDAN24:def 3, s. auch COMPLEX2:def 2), die dazugehörige Matrix ist Rotation(1,2,2,t) (MATRTOP3:def 3).

(c) Die Matrix zu einer linearen Abbildung F kann über AutMt(F,b1,b2) (MATRLIN:def 8) gewonnen werden. Keine Refernz für die Bemerkung.

(d) Keine Referenz für die Transposition als lineare Abbildung; Eigenschaften sind MATRIX_6:23, MATRIXR1:30.

(e) Keine Referenz für das Integral als lineare Abbildung; Eigenschaften sind INTEGRA1:57, INTEGRA2:31.

(f) Keine Referenz für die Ableitung als lineare Abbildung; Eigenschaften sind FDIFF_2:17, FDIFF_2:19

2.1.2.

Definition (L1) ist additive (VECTSP_1:def 19) (L2) ist homogeneous (MOD_2:def 2). Zusammen wird dies als linear-transformation of V,W (RANKNULL) (oder LinearOperator of V,W für K= (LOPBAN_1) oder K= (CLOPBAN1)). Keine Referenz für die genaueren Bezeichnungen.

Bemerkung (a) RANKNULL:9,8 (b) steckt in T@l (RANKNULL:def 5) und RANKNULL:29 (c) nur Spezialfall ZMODUL06:45 (d) keine Referenz (e) implizit über RANKNULL:def 2, VECTSP_9:25 (f) keine Referenz

2.1.3.

Bemerkung 1 als Redefinition in VECTSP_12

Bemerkung 2 keine allgemeine Referenz, aber s. HAHNBAN1:def 10

2.1.4.

Satz keine Referenz

Aufgaben zu 2.1

  1. keine Referenz
  2. keine Referenz
  3. keine Referenz
  4. keine Referenz
  5. keine Referenz
  6. keine Referenz

2.2 Bild, Fasern und Kern, Quotientenvektorräume

2.2.1.

ImF als Vektorraum ist im F (RANKNULL:def 2), F1(w) ist Coim(F,w) (RELAT_1:def 17), KerF als Vektorraum ist ker F (RANKNULL:def 1) oder Ker F (VECTSP10:def 11).

Bemerkung (a) steckt in RANKNULL:def 1,2 (b) implizit durch RANKNULL:13 (c) MATRLIN2:43 (d) keine Referenz

rangF ist rank F (RANKNULL:def 7). Dass der (Spalten)Rang der Matrix einer linearen Abbildung gleich dem Rang der linearen Abbildung ist, ist MATRLIN2:48.

2.2.2.

Dass X durch F zerlegt wird, ist TOPS_5:5.

Beispiel keine Referenz

Bemerkung keine Referenz

2.2.3.

Definition Keine direkte Definition für affiner Unterraum, aber v+W ist v + W (VECTSP_4:def 5).

Bemerkung (a) VECTSP_4:55 (b) implizit über VECTSP_4:67,44,80

2.2.4.

Satz nur die Folgerung in RANKNULL:44

Korollar 1 keine Referenz

Korollar 2 keine Referenz

Korollar 3 keine Referenz

2.2.5.

Faktorisierungssatz keine Referenz

2.2.6.