Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log)

Aus testwiki
Zur Navigation springen Zur Suche springen

Zurück zu Bestimmte Integrale

0.1
01log(1+x)log21+x2dx=π8log2

Vorlage:Klappbox

0.2
01log(1+x)log21x2dx=π224

Vorlage:Klappbox

0.3
1log(1+x)log21+x2dx=Gπ8log2

Vorlage:Klappbox

0.4
1log(1+x)log21x2dx=π212

Vorlage:Klappbox

0.5
01logx1+x2dx=G

Vorlage:Klappbox

0.6
01logx1x2dx=π28

Vorlage:Klappbox

0.7
0log(1+x+x2)1+x2dx=π3log(2+3)+43G

Vorlage:Klappbox

0.8
01log(logx)dx=γ

Vorlage:Klappbox

0.9
01(2logxx24x+83logxx2+2x+2)dx=G

Vorlage:Klappbox

0.10
0log(x+1)log2x+π2dxx2=γ

Vorlage:Klappbox

0.11
01log(1+x2+3)1+xdx=π212(13)+log(2)log(1+3)

Vorlage:Klappbox

0.12
01log(1+x4+15)1+xdx=π212(215)+log(1+52)log(2+3)+log(2)log(3+5)

Vorlage:Klappbox

0.13
01log(1+x6+35)1+xdx=π212(335)+log(1+52)log(8+37)+log(2)log(5+7)

Vorlage:Klappbox

0.14
01log(1x)log(x)log(1+x)dx=6+5π212(log2)2+4log2π22log2+218ζ(3)

Vorlage:Klappbox

0.15
01log(1+x)logx1+xdx=ζ(3)8

Vorlage:Klappbox

0.16
01log(1+x)logxxdx=34ζ(3)

Vorlage:Klappbox

0.17
01log(1+x)logx1xdx=π24log2+ζ(3)

Vorlage:Klappbox

0.18
01log(1x)logx1+xdx=π24log2+138ζ(3)

Vorlage:Klappbox

0.19
01log(1x)logxxdx=ζ(3)

Vorlage:Klappbox

0.20
01log(1x)logx1xdx=ζ(3)

Vorlage:Klappbox

0.21
01log(1x)log(1+x)xdx=58ζ(3)

Vorlage:Klappbox

0.22
01log(1x)log(1+x)1+xdx=(log2)28π212log2+ζ(3)8

Vorlage:Klappbox

1.1
01log2nx1+x2dx=12|E2n|(π2)2n+1n0

Vorlage:Klappbox

1.2
0logn1x1+x2dx=|En1|(π2)nn1

Vorlage:Klappbox

1.3
0logn1x1x2dx=2n(12n)|Bn|n(π2)nn1

Vorlage:Klappbox

1.4
0dx(x+1)n(log2x+π2)=Cn Fontana-Zahlen genügen der Rekursion: C0=1,k=0n1Cknk=0

Vorlage:Klappbox

1.5
01x+1u1log2x+π2dx=1u+1log(1u)u×1

Vorlage:Klappbox

1.6
01(log1x)z11+xdx=η(z)Γ(z)Re(z)>0

Vorlage:Klappbox

1.7
01(log1x)z11xdx=ζ(z)Γ(z)Re(z)>1

Vorlage:Klappbox

1.8
01xα1xα(x+1)logxdx=log(tanαπ2)0<Re(α)<1

Vorlage:Klappbox

1.9
01(log1x)z1dx=Γ(z)Re(z)>0

Vorlage:Klappbox

1.10
01(logxa+1xlogxa+x)dx=12(logalog(a+1))2a[1,0]

Vorlage:Klappbox

1.11
012logx(aπ)2+log2xx1x2dx=12a+ψ(a)logaRe(a)>0

Vorlage:Klappbox

1.12
0log(1+2sinαx+x2)1+x2dx=πlog(2cosα2)+αlog(tanα2)+2k=0sin(2k+1)α(2k+1)20<α<π

Vorlage:Klappbox

1.13
01loglog(1x)1+2cosαπx+x2dx=π2sinαπ(αlog2π+logΓ(12+α2)Γ(12α2))0<α<1

Vorlage:Klappbox

1.14
01log(1x)x2zlog2x+(2πz)2dx=log(z!ezzz2πz)Re(z)>0

Vorlage:Klappbox

2.1
ablogx(x+a)(x+b)dx=log(ab)2(ba)log((a+b)24ab)

Vorlage:Klappbox

2.2
0logx(x+a)(x+b)dx=log2(a)log2(b)2(ab)

Vorlage:Klappbox