Digitale Schaltungstechnik/ Zahlensysteme

Aus testwiki
Zur Navigation springen Zur Suche springen

Digitale Schaltungstechnik/Navi

Unär

Unärdarstellungen von Zahlen werden insbesondere beim Decoder verwendet. Solche Zahlen sind Ziffernfolgen von 0 und 1, wobei es genau eine Eins in der Folge gibt.

Dezimal Unär
0 00001
1 00010
2 00100
3 01000
4 10000

Allgemein kann eine N-stellige Zahl die Ziffern 0...N-1 darstellen.

Ein Decoder wandelt diese Zahlendarstellung in eine Binärzahl um.

Binär

Binärdarstellungen von Zahlen enthalten ebenfalls die Ziffern 0 und 1. Sie sind N-stellige Ziffernfolgen der Form {0,1}N, wobei eine solche Ziffernfolge 2N verschiedene Werte annehmen kann.

Dezimal Binär
0 00000
1 00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000

Positive Dualzahlen

Geht aus dem Zusammenhang klar hervor, dass es sich um positive Zahlen handelt, kann man den Wert einer Zahl, deren Ziffernfolge <zn,zn1,...,z1,z0> ist berechnen durch:

Z=i=0nzi*2i

Negative Dualzahlen

Betrag-Vorzeichen

Negative Betrag-Vorzeichen-Zahlen haben den Nachteil, dass sie doppelte Darstellungen für die Null haben. Ansonsten ist das erste Bit bei negativen Zahlen immer Eins.

Dezimal Binär
2 00010
1 00001
0 00000
-0 10000
-1 10001
-2 10010
-3 10011
-4 10100

Einerkomplement

Negative Zahlen im Einerkomplement haben auch eine "doppelte Null", das erste Bit ist immer "1". Das Einerkomplement einer negativen Zahl erhält man, in dem man alle Bits vom Betrag der Zahl umkehrt. Beispiel: 210 = 000102 und -210=111012.

Das Einerkomplement wird heute nur noch selten verwendet, moderne Computerhardware nutzt das Zweierkomplement.

Dezimal Binär
2 00010
1 00001
0 00000
-0 11111
-1 11110
-2 11101
-3 11100
-4 11011

Zweierkomplement

Beim Zweierkomplement einer N-Bit-Zahl (zn-1,zn-2,...,z0) ist ebenfalls die höherwertigste Stelle zn-1zu Eins gesetzt. Allerdings ist der Wert dieser Zahl

Z=2n1+i=0n2zi*2i

Beispielsweise ist die Zahl 10102 = -23 + 0 * 22 + 1 * 21 + 0 * 20 = -8 + 2 = -6

Umgekehrt, sucht man eine N-stellige Zahl K im Zweierkomplement, berechnet man -2n-1 + x = K. x stellt man für die übrigen Ziffern als positive Zahl dar.

Beispiel 1

Gesucht ist das 5-stellige Zweierkomplement von -9. Es gilt:

24+x=9

also

16+x=9 und daraus folgt sofort, dass x = 7 ist.

710 = 01112

Es ist also -910 = 101112

Beispiel 2

Gesucht ist das 8-stellige Zweierkomplement der Zahl -9. Es gilt

27+x=9

also

128+x=9 und daraus folgt sofort, dass x = 119 ist.

11910 = 11101112

Es ist also -910 = 111101112

Zusammenfassung Beispiele

-9 als 5-Bit Zahl ist 1.0111. Als 8-Bit Zahl aber 1111.0111 (Punkt zum Veranschaulichen geschrieben). Allgemein kann man sagen, wenn man eine negative Zahl verlängert, dann verlängert man den linken Bereich, wo die Einsen stehen.


Beliebige Basis

Ganze Zahlen mit einer beliebigen Basis b können die Ziffern 0, 1, 2, ..., b-1 haben und lassen sich so darstellen:

Z=i=0n1zi*bi


Fließkommazahlen

Digitale Schaltungstechnik/Navi