Algorithmensammlung: Numerik: Quadratur: Newton-Cotes-Quadratur

Aus testwiki
Zur Navigation springen Zur Suche springen

Algorithmensammlung: Numerik: Quadratur

Newton-Cotes-Quadratur

Die Newton-Cotes-Quadratur basiert auf den Vorlage:W. Diese basieren darauf, dass ein Polynom einfach integriert werden kann – die zu integrierende Funktion wird zunächst interpoliert und dann integriert.

Die Implementierungen auf dieser Seite sind solche der summierten Form der Quadratur (sog. summierte Quadraturformel). Dabei wird die Funktion nochmals durch ein Gitter in Intervalle unterteilt und auf den Intervallen getrennt integriert.

Die für den Algorithmus notwendigen Gewichte wi mit i (aufsteigend sortiert) sind dabei:

Name Gewichte wi
Vorlage:W 01
Vorlage:W 1212
Vorlage:W 164616
3/8-Regel 18383818
Milne-Regel 790329012903290790

Matlab

Siehe Octave

Octave

function integral = newtoncotes(f, gitter, gewichte)
    % f ist die Funktion.
    % Das Gitter ist ein Gitter auf dem Integrationsgebiet,
    % am einfachsten ist [a, b].
    % Die Gewichte sind vorbestimmt und können der Formel auf
    %  https://de.wikipedia.org/wiki/Newton-Cotes-Formel
    % entnommen werden.
    %
    if ! exist('gewichte')
        gewichte = [1/8 3/8 3/8 1/8]; % 3/8-Regel
    end
    integral = 0;
    for i = 1:length(gitter) - 1
        a = gitter(i);
        b = gitter(i + 1);
        % disp([' Im Teil ' num2str(a) ' - ' num2str(b) ]);
        intTeil = 0;
        for n = 1:length(gewichte)
            % disp(['  ' num2str(gewichte(n)) ' *  f(' num2str(a + (b - a) * (n - 1) / (length(gewichte) - 1)) ')' ]);
            intTeil = intTeil + gewichte(n) * f(a + (b - a) * (n - 1) / (length(gewichte) - 1));
        end
        integral = integral + intTeil * (b - a);
    end
end;