Grundlagen der quantitativen anorganischen Analytik: Pufferkapazität

Aus testwiki
Zur Navigation springen Zur Suche springen

Pufferkapazität β

Beachte die Verwechslungsmöglichkeit mit der Massenkonzentration, welche das gleiche Formelzeichen hat:

Pufferkapazität:  [β] = molL
Massenkonzentration:  [β] = gL

Wir betrachten eine beliebige Protolytlösung mit einem nicht näher definierten Ausgangs-pH (pH0)

Wie gut kann dieser pH bei Zugabe kleiner Mengen Säure oder Base erhalten bleiben? Wasser hat beispielsweise eine niedrige Pufferkapazität.

Zusatz kleiner Portionen von:

HCl: ΔnS* bzw. ΔcS*
NaOH:  ΔnB* bzw. ΔcB*

Das Sternchen bedeutet "fiktiv", d.h. vor Einstellung des Gleichgewichtes, bezogen auf VGesamt.


Folgende Festlegung muss getroffen werden um die Entstehung negativer Vorzeichen zu verhindern:


ΔpH = pHnachher - pH0

"Nachher" bedeutet nach Zugabe der theoretischen Zusatzmenge von Säure oder Base.

Säurezugabe entspricht: ΔpH < 0

Basezugabe entspricht: ΔpH > 0

Definition:      β=ΔcSaeure*ΔpHβ=ΔcBase*ΔpH

Neutralisationskurve HCl / NaOH

Diese Gleichung entspricht der Berechnung des Steigungsdreiecks (Sekantensteigung) der Neutralisationskurve (= Differenzenquotient).

Diese Formeln können jedoch nicht zur Berechnung der Pufferkapazität benutzt werden, da bei gleichen eingesetzten H3O+- bzw. OH--Mengen eine gleiche pH-Änderung resultieren würde.

In der Realität ist das jedoch nicht der Fall, denn die Puffer- (Titrations-)kurve ist nicht symmetrisch, weil beide beteiligten Protolyte verschiedene pKS-Werte haben.

Deshalb muss man den Differenzialquotienten (Tangentengleichung) bilden:

ΔcS* sei sehr klein: dcS*

ΔcB* sei sehr klein: dcB*

Übergang zum Differenzialquotienten Δc*0 .

      β=dcSaeure*dpHβ=dcBase*dpH

Denn bei unendlich kleiner zugesetzter Säure-/Basemenge ist die pH-Änderung symmetrisch.

 β=dcSaeure*dpH=dcBase*dpH

Auch diese Formel ist noch nicht für eine Berechnung geeignet.

β sehr starker Protolyte

Die Berechnung sehr starker Protolyte erfolgt ohne Berücksichtigung von Grenzfällen und Autoprotolysen. Da diese Art von Protolyten im wässrigem Medium einer vollständigen Protolyse unterliegen, gilt:

 pH  =log c0(Saeure)  =log c(H3O+)
 pOH  =log c0(Base)  =log c(OH)

Der Differentialquotient

 β = dcB*dpH

ist eine Ableitung

 y = f(x) = dydx,

deren Stammfunktion gesucht ist. Allgemein:

 y = f(x)

ist hier:

 cB* = f(pH)

Der Kehrwert 1/β entspricht der Steigung der Titrationskurve einer schwachen Säure mit einer starken Base.

 1β = dpHdcB*

oder

 1β = dpHdcS*

Ist  dcS* identisch mit  dc(H3O+) ... so gilt auch  pH = log c0(Saeure).

Dazu muss die Funktion

 pH = log c(H3O+)

nach c(H3O+) abgeleitet werden. Als Ergebnis erhält man:

 β=2,303c(H3O+) für sehr starke Säuren und
 β=2,303c(OH) für sehr starke Basen.

Rechenweg für diese beiden Formeln.

Die Gesamtpufferkapazität βΣ sehr starker Protolyte ist somit:

 βΣ = 2,303[c(H3O+)+c(OH)]


Gesamtpufferkapazität sehr starker Protolyte

 βΣ = 2,303[c(H3O+)+c(OH)]


Datei:KD PufferkapazitaetskurveSehrStarkeProtolyte.PNG

Durch den Tausch der Achsen erhält man cB* als Funktion des pH.

Da auch bei extremer Verdünnung von HCl der pH von 7 nicht überschritten wird, sind die Hydroniumionen des Wassers (aus der Autoprotolyse) als puffernde Komponente zu berücksichtigen.

β sehr "schwacher" Protolyte

Gesamtpufferkapazität "schwacher" Protolyte

Titration einer HAcO / NH3-Lösung

Titration einer Phosphorsäure-Lösung

idealer Universalpuffer