Serlo: EN: Function spaces

Aus testwiki
Version vom 18. Februar 2021, 17:19 Uhr von imported>Sascha Lill 95
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}

In this article we consider the space of functions, that is, the vector space of all maps f:XV of a set X into a vector space V.

Definition of function spaces

Let K be a field, (V,+V,V) a K-vector space and X some set.

Then we can define the set of maps of X to V:

Mathe für Nicht-Freaks: Vorlage:Definition

Mathe für Nicht-Freaks: Vorlage:Hinweis

On this set we define an addition and a scalar multiplication:

Mathe für Nicht-Freaks: Vorlage:Definition

Mathe für Nicht-Freaks: Vorlage:Hinweis

Mathe für Nicht-Freaks: Vorlage:Hinweis

The function space is a vector space

Mathe für Nicht-Freaks: Vorlage:Satz

Mathe für Nicht-Freaks: Vorlage:Hinweis

The set of differentiable functions f:(0,1) an an -vector space

In the previous section we showed that the set of all maps of a set X into a K-vector space V is again a K-vector space. We now consider the special case X=(0,1), K= and V=. We already know that V is a K-vector space. Hence, we know so far that the set of maps f:(0,1) is an -vector space.

We now consider the set of differentiable functions f:(0,1), which is denoted 𝒟((0,1),) (as "differentiable").


Mathe für Nicht-Freaks: Vorlage:Satz

Relation to the sequence space

We have already seen that the set of sequences over K forms a vector space with respect to coordinate-wise operations. So a sequence (an)n with entries in K can be seen as a function K,nan. In this sense, the sequence space is a special case of the function space Fun(X,V) by setting X:= and V:=K.


{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}