Serlo: EN: Dimension

Aus testwiki
Version vom 14. Januar 2021, 20:00 Uhr von imported>Sascha Lill 95 (Exercises: Dimension formula)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}

In this article we define the dimension of a vector space and show some elementary properties like the dimension formula.

Motivation

In this article we define the notion of a dimension of a vector space. It would be nice to do it in a way that common vector spaces like ,2,3,... have the "obvious dimensions" 1,2,3,... . The vector space 3 has a basis with 3 elements, for example the standard basis B3={e1,e2,e3}.

Similarly, for any field K, we want the vector space Kn to have dimension dimK(Kn)=n. Again, with the standard basis Bn={e1,...,en} we find a basis with exactly n vectors.

This suggests to define the dimension of a vector space V as the number of vectors of a basis of V. At this point, it is not yet clear that every basis has the same cardinality. We will prove this in the following.

Definition of the dimension

Mathe für Nicht-Freaks: Vorlage:Definition

From this definition it is not clear that the dimension is independent of the choice of the basis of our vector space. For example, it could happen that a vector space has different bases with different numbers of elements. This does actually never happen, as the next theorem shows:

Mathe für Nicht-Freaks: Vorlage:Satz Mathe für Nicht-Freaks: Vorlage:Beweis

Examples of dimensions

Dimension of Kn

Mathe für Nicht-Freaks: Vorlage:Beispiel

Dimension of a polynomial space

Mathe für Nicht-Freaks: Vorlage:Beispiel

Dimension of as an -vector space

Mathe für Nicht-Freaks: Vorlage:Beispiel

Dimension of the null space

Mathe für Nicht-Freaks: Vorlage:Beispiel

Properties of the dimension

We now prove some properties of the "dimension" notion: Mathe für Nicht-Freaks: Vorlage:Satz

In order to show that it is important to assume V to be finite-dimensional, consider an example of an infinite-dimensional vector space that has a proper infinite-dimensional subspace:

Mathe für Nicht-Freaks: Vorlage:Beispiel

Dimension formula

Proof of the dimension formula

The following dimensional formula gives how to calculate the dimension of the sum of two finite dimensional subspaces U,WV of a K-vector space V.

Mathe für Nicht-Freaks: Vorlage:Satz

Next, we consider a conclusion of the dimension formula that makes a statement about the sum of subspaces (missing). Visually, this means that the complement of a subspace in terms of dimension is the missing "remainder".

Mathe für Nicht-Freaks: Vorlage:Satz

Exercises: Dimension formula

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Mathe für Nicht-Freaks: Vorlage:Aufgabe


{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}