Serlo: EN: Constant functions
{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}
"A function is constant, if its derivative vanishes", i.e. . This is the main statement which we want to make concrete in this article.
Criterion for constant functions
Mathe für Nicht-Freaks: Vorlage:Satz
Identity theorem of differential calculus Vorlage:Anker
The first conclusion of implying that a function is constant is that functions with identical derivatives are identical except for one constant. This result will prove very useful later on in the fundamental theorem of calculus.
Mathe für Nicht-Freaks: Vorlage:Satz
Application: characterization of the exponential function
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Hinweis
Exercises
Interval assumption for constant functions
The condition that the function is defined on an interval is necessary for the criterion for constancy! This is illustrated by the following task:
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Trigonometric Pythagorean theorem
Using the criterion for constancy, identities of functions can also be proven very well:
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Function equation for arctan
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Exercise: identity theorem
Mathe für Nicht-Freaks: Vorlage:Aufgabe
Characterization of sin and cos
Mathe für Nicht-Freaks: Vorlage:Gruppenaufgabe
{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}