Serlo: EN: Properties of supremum and infimum
{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}
Since the Supremum is applied to sets, a very obvious question is: What happens if we change the set? If we intersect it with another set, for example, or take the union with another set, or if we make it larger or smaller? Here we will learn some rules that will help you to work with the Supremum in such cases.
Overview about rules for supremum and infimum
First, let us introduce the following abbreviations:
Mathe für Nicht-Freaks: Vorlage:Definition
Now, for the supremum and infimum the following rules apply (where and and ). In the following it is always assumed that the supremum or the infimum exists.
Rules for the supremum
- , if holds.
- for
- , if and contain only non-negative elements.
- There is a sequence in with .
Mathe für Nicht-Freaks: Vorlage:Frage
Mathe für Nicht-Freaks: Vorlage:Frage

Mathe für Nicht-Freaks: Vorlage:Frage
Rules for the infimum
- for
- , if and contain only non-negative elements.
- There is a sequence in with .
Proof of the rules
In the following sections we will prove the above properties only for the Supremum. The infimum is treated analogously.
Supremum is greater/equal to the infimum
Mathe für Nicht-Freaks: Vorlage:Satz
Estimating the supremum of subsets
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum and union
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum and intersection
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum and multiplication with
Mathe für Nicht-Freaks: Vorlage:Satz
Mathe für Nicht-Freaks: Vorlage:Hinweis
Supremum and multiplication with a (non-negative) number
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum and sums
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum and products
Mathe für Nicht-Freaks: Vorlage:Satz
Supremum of the sum is smaller/equal the sum of suprema
Mathe für Nicht-Freaks: Vorlage:Satz
Existence of a sequence in with
Mathe für Nicht-Freaks: Vorlage:Satz
{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}