Serlo: EN: Properties of supremum and infimum

Aus testwiki
Version vom 19. Oktober 2020, 18:01 Uhr von imported>Sascha Lill 95 (Supremum and products)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}

Since the Supremum is applied to sets, a very obvious question is: What happens if we change the set? If we intersect it with another set, for example, or take the union with another set, or if we make it larger or smaller? Here we will learn some rules that will help you to work with the Supremum in such cases.

Overview about rules for supremum and infimum

First, let us introduce the following abbreviations:

Mathe für Nicht-Freaks: Vorlage:Definition

Now, for the supremum and infimum the following rules apply (where A,B,D and f,g:D and λ). In the following it is always assumed that the supremum or the infimum exists.

Rules for the supremum

  • supAinfA
  • ABsupAsupB
  • sup(AB)=max{supA,supB}
  • sup(AB)min{supA,supB}
  • sup(A)=sup({x:xA})=inf(A)
  • sup({x1:xA})=(inf(A))1, if inf(A)>0 holds.
  • sup(λA)=sup({λx:xA})=λsup(A) for λ0
  • sup(A+B)=sup({x+y:xAyB})=sup(A)+sup(B)
  • sup(AB)=sup({xy:xAyB})=sup(A)sup(B), if A and B contain only non-negative elements.
  • sup(f+g)(D)supf(D)+supg(D)
  • There is a sequence (an)n in A with limnan=supA.

Mathe für Nicht-Freaks: Vorlage:Frage

Mathe für Nicht-Freaks: Vorlage:Frage

The supremum of a sum of two functions might be smaller than the sum of its suprema.

Mathe für Nicht-Freaks: Vorlage:Frage

Rules for the infimum

  • infAsupA
  • ABinfAinfB
  • inf(AB)=min{infA,infB}
  • inf(AB)max{infA,infB}
  • inf(A)=inf({x:xA})=sup(A)
  • inf(λA)=inf({λx:xA})=λinf(A) for λ0
  • inf(A+B)=inf({x+y:xAyB})=inf(A)+inf(B)
  • inf(AB)=inf({xy:xAyB})=inf(A)inf(B), if A and B contain only non-negative elements.
  • inf(f+g)(D)inff(D)+infg(D)
  • There is a sequence (an)n in A with limnan=infA.

Proof of the rules

In the following sections we will prove the above properties only for the Supremum. The infimum is treated analogously.

Supremum is greater/equal to the infimum

Mathe für Nicht-Freaks: Vorlage:Satz

Estimating the supremum of subsets

Mathe für Nicht-Freaks: Vorlage:Satz


Supremum and union

Mathe für Nicht-Freaks: Vorlage:Satz

Supremum and intersection

Mathe für Nicht-Freaks: Vorlage:Satz


Supremum and multiplication with 1

Mathe für Nicht-Freaks: Vorlage:Satz

Mathe für Nicht-Freaks: Vorlage:Hinweis

Supremum and multiplication with a (non-negative) number

Mathe für Nicht-Freaks: Vorlage:Satz

Supremum and sums

Mathe für Nicht-Freaks: Vorlage:Satz

Supremum and products

Mathe für Nicht-Freaks: Vorlage:Satz

Supremum of the sum is smaller/equal the sum of suprema

Mathe für Nicht-Freaks: Vorlage:Satz

Existence of a sequence (an)n in A with limnan=supA

Mathe für Nicht-Freaks: Vorlage:Satz

{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}