Serlo: EN: The squeeze theorem

Aus testwiki
Version vom 19. Januar 2021, 16:34 Uhr von imported>Sascha Lill 95 (edited figures)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}}

The squeeze theorem is a powerful tool to determine the limit of a complicated sequence. It is based on comparison to simpler sequences, for which the limit is easily determinable.

Motivation

Datei:Beispielaufgabe zum Konvergenzbeweis einer Wurzelfolge mit dem Sandwichsatz.webm The intuition behind this theorem is quite simple: We are given a complicated sequence (an)n and want to know whether it converges. Often, one can leave out terms in the complicated sequence (an)n and gets some simpler sequences (bn)n and (cn)n. If (bn)n is a lower bond and (cn)n an upper bound, then (an)n is "caught" in the space between both functions. If both sequences converge to the same limit a, they "squeeze" together this space to this single point and (an)n has no other option than to converge towards a, as well.

image about the principle of the sandwich lemma
image about the principle of the sandwich lemma
A ham & cheese sandwich

You may also visualize this theorem by a "ham & cheese sandwich" (see image on the right). The upper and lower bounds (bn)n and (cn)n act as two "slices of toast", which confine (an)n , i.e. the "filling". If you squeeze the toast slices together, the filling in between will also squeezed to this point.

The squeeze theorem

Datei:Sandwich Theorem - Beweis Anwendung Beispielaufgabe.webm The theorem reads as follows:

Mathe für Nicht-Freaks: Vorlage:Satz

Mathe für Nicht-Freaks: Vorlage:Hinweis

Mathe für Nicht-Freaks: Vorlage:Beispiel

A useful special case

We often encounter 0 as a sequence limit (null sequence). Since the squeeze theorem can be used to prove any a to be a limit of a sequence (an)n, it can also be used for a=0. Especially, for any convergent (an)n, the sequence (|ana|)n must converge to 0:

Mathe für Nicht-Freaks: Vorlage:Satz

Mathe für Nicht-Freaks: Vorlage:Hinweis

Mathe für Nicht-Freaks: Vorlage:Beispiel

Squeeze theorem: examples and problems

Squeeze theorem: example & exercise 1

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Aufgabe


Squeeze theorem: example & exercise 2

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Squeeze theorem: example & exercise 3

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Squeeze theorem: example & exercise 4

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Squeeze theorem: example & exercise 5

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Mathe für Nicht-Freaks: Vorlage:Hinweis

Mathe für Nicht-Freaks: Vorlage:Aufgabe

Examples & exercises: squeeze theorem for null sequences

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Beispiel

Mathe für Nicht-Freaks: Vorlage:Aufgabe

{{#invoke:Mathe für Nicht-Freaks/Seite|unten}}