Formelsammlung Mathematik: Quadratische Gleichungen
Formelsammlung Mathematik: Vorlage:Navigation-top
Allgemein
Definition
Formelsammlung Mathematik: Vorlage:dbox
Formelsammlung Mathematik: Vorlage:dbox
Lösung
Für jede quadratische Gleichung gibt es wegen a≠0 die Äquivalenzumformung
Somit lässt sich jede quadratische Gleichung über p:=b/a und q:=c/a in die Normalform bringen.
Die Zahl D = p2−4q heißt Diskriminante. Es werden drei Fälle unterschieden.
| D>0 | D=0 | D<0 |
|---|---|---|
| Es gibt zwei Lösungen:
|
Es gibt eine Lösung:
|
Es gibt keine reelle Lösung.
Aber es gibt zwei komplexe Lösungen: Die Lösungen sind zueinander konjugiert: |
Kompakte Lösungsformel:
Satz von Vieta
Formelsammlung Mathematik: Vorlage:tbox
Lösungen als Nullstellen

Die Lösungsmenge einer quadratischen Gleichung lässt sich als Menge der Nullstellen einer quadratischen Funktion beschreiben.
Für die quadratische Funktion
ist die zugehörige quadratische Gleichung.
Die Lösungen der Gleichung sind die Nullstellen von .
Spezialfälle
Kein absoluter Term
Bei einer quadratischen Gleichung der Form
- ax2 + bx = 0.
lässt sich die linke Seite faktorisieren. Man erhält (ax+b)x = 0. Es gilt
- (ax+b)x = 0 genau dann, wenn ax+b = 0 oder x = 0.
Damit ergeben sich zwei Lösungen:
- x1 = 0,
- x2 = −b/a.
Kein linearer Term
Eine quadratische Gleichung der Form
- ax2 + c = 0
lässt sich in die Form
- x2 = −c/a
bringen. Es werden drei Fälle unterschieden.
| c/a < 0 | c=0 | c/a > 0 |
|---|---|---|
|
|
x1=x2=0 |
Es gibt keine reelle Lösung. Es gibt aber zwei komplexe Lösungen: |
Komplexe Koeffizienten


Betrachte
mit komplexen Zahlen z, a, b, c und a≠0.
Die Gleichung lässt sich wie im reellen normieren, und man bildet wieder die Diskriminante
- .
Jede quadratische Gleichung besitzt zwei komplexe Lösungen, die im Fall D=0 zu einer doppelten Lösung zusammenfallen.
Die Lösungen sind
und
wobei
der Hauptwert der komplexen Wurzel von D ist.
Die komplexe Wurzel von D ist die Lösungsmenge der quadratischen Gleichung , das ist gerade .