𝐯∈ℝn⟺𝐯=(𝑣0𝑣1⋮𝑣n−1)mit𝑣𝑖∈ℝ,𝑖=0,⋯,n−1
𝐮+𝐯=(𝑢0𝑢1⋮𝑢n−1)+(𝑣0𝑣1⋮𝑣n−1)=(𝑢0+𝑣0𝑢1+𝑣1⋮𝑢n−1+𝑣n−1)∈ℝn
𝐮−𝐯=(𝑢0𝑢1⋮𝑢n−1)−(𝑣0𝑣1⋮𝑣n−1)=(𝑢0−𝑣0𝑢1−𝑣1⋮𝑢n−1−𝑣n−1)∈ℝn
𝑎𝐮=(𝑎𝑢0𝑎𝑢1⋮𝑎𝑢n−1)∈ℝn
𝐰=(𝑤x𝑤y𝑤z)=𝐮×𝐯=(𝑢𝑦𝑣𝑧−𝑢𝑧𝑣𝑦𝑢𝑧𝑣𝑥−𝑢𝑥𝑣𝑧𝑢𝑥𝑣𝑦−𝑢𝑦𝑣𝑥)