CPRT.I.C.08: Unterschied zwischen den Versionen

Aus testwiki
Zur Navigation springen Zur Suche springen
imported>Pelikam
 
(kein Unterschied)

Aktuelle Version vom 21. Juni 2024, 10:57 Uhr

CPRT.I.C

08 Vom Differential über das Integral zum Zustand der inneren Energie

A in (S,V,N)-Koordinaten: dU(S,V) -> U(S,V,N)

(3.11.1.1.1) dU = (V0V)2/3exp(23SS0nR)[+nRT0dSnRp0V0dVV] dU(S,V),dN=0(3.9.1.1.2)
U = S,dV=0dU U(S,V,N)
= S,dV=0(V0V)2/3exp(23SS0nR)nRT0dSnR
= +32nRT0(V0V)2/3exp(23SS0nR)+B(V,N)
(UV)S,N = nRVT0(V0V)2/3exp(23SS0nR)+(BV)N VU(S,V,N),B(V,N)
= p+(BV)N p(S,V,N),B(V,N)
(3.11.1.1.2) (UV)S,N = p VU(S,V,N),p(S,V,N)
B B(V,N) B=const.
U = V,dS=0dU U(S,V,N)
= S,dV(V0V)2/3exp(23SS0nR)p0V0dVV
= S,dVp0V01V(V0V)2/3exp(23SS0nR)dV
= +32nRT0(V0V)2/3exp(23SS0nR)+A(S,N)
(US)V,N = +T0(V0V)2/3exp(23SS0nR)+(AS)N SU(S,V,N),A(S,N)
(3.11.1.1.3) = +T+(AS)N T(S,V,N),A(S,N)
(US)V,N = +T SU(S,V,N),T(S,V,N)
A A(S,N) A=const.
U = +32nRT0(V0V)2/3exp(23SS0nR)+A+B U(S,V,N)
(3.11.1.1.4) U(S0,V0,N) = 0
A+B = 0
(3.11.1.1.5) U = +32nRT0(V0V)2/3exp(23SS0nR) U(S,V,N)(3.10.1.1.1)

B in (S,p,N)-Koordinaten: dU(S,p) -> U(S,p,N)

(3.11.1.2.1) dU = 35(pp0)2/5exp(25SS0nR)[+nRT0dSnR+p0V0dpp] dU(S,p),dN=0(3.9.2.2.7)
U = S,dp=0dU U(S,p,N)
= S,dp=035(pp0)2/5exp(25SS0nR)nRT0dSnR
= +5235nRT0(pp0)2/5exp(25SS0nR)+B(p,N)
= +32nRT0(pp0)2/5exp(25SS0nR)+B(p,N)
(Up)S,N = +2532nRpT0(pp0)2/5exp(25SS0nR)+(Bp)N pU(S,p,N),B(p,N)
= +35nRpT0(pp0)2/5exp(25SS0nR)+(Bp)N pU(S,p,N),B(p,N)
= +35V+(Bp)N pU(S,p,N),V(S,p,N),B(p,N)
(Up)S,N = ((HpV)p)S,N=VV(pp)S,Np(Vp)S,N (S,p,N):pU,pH,pV
p(Vp)S,N = +35V (S,p,N):pV,V(3.9.2.2.3)
(3.11.1.2.2) (Up)S,N = +35V (S,p,N):pU,V
B B(p,N) B=const.
U = p,dS=0dU U(S,V,N)
= p,dS=035(pp0)2/5exp(25SS0nR)p0V0dpp
= p,dS=0351p(pp0)2/5exp(25SS0nR)p0V0dp
= +5235p0V0(pp0)2/5exp(25SS0nR)+A(S,N)
= +32p0V0(pp0)2/5exp(25SS0nR)+A(S,N)
(US)p,N = +251nR32p0V0(pp0)2/5exp(25SS0nR)+(AS)N SU(S,p,N),A(S,N)
= +35T0(pp0)2/5exp(25SS0nR)+(AS)N SU(S,p,N),A(S,N)
= +35T+(AS)N SU(S,p,N),T(S,p,N),A(S,N)
(US)p,N = ((HpV)S)p,N=Tp(VS)p,N (S,p,N):SU,SH,SV,T
S(VS)p,N = 25SnRV (S,p,N):SV,S,V(3.9.2.3.3)
(3.11.1.2.3) p(VS)p,N = 25T SV(S,p,N),T(S,p,N)
(3.11.1.2.4) (US)p,N = +35T SU(S,p,N),T(S,p,N)
A A(S,N) A=const.
U = 32nRT0(pp0)2/5exp(25SS0nR)+A+B U(S,p,N)
(3.11.1.2.5) U(S0,p0,N) = 0
A+B = 0
(3.11.1.2.6) U = 32nRT0(pp0)2/5exp(25SS0nR) U(S,p,N)(3.10.2.2.2)

C in (T,V,N)-Koordinaten: dU(T,V) -> U(T,V,N)

(3.11.1.3.1) dU = 32nRdT dU(T,V),dN=0(3.9.3.3.3)
U = T,dV=0dU U(T,V,N)
= S,dV=032nRdT
= +32nRT+B(V,N)
(UV)T,N = +(BV)N VU(T,V,N),B(V,N)
(UV)T,N = ((F+TS)V)T,N=p+S(TV)T,N+T(SV)T,N (T,V,N):VU,VH,VS
V(SV)T,N = nR VS(T,V,N)(3.9.3.2.1)
+T(SV)T,N = +nRTV=+p (T,V,N):VS,p
(3.11.1.3.2) (UV)T,N = 0 (T,V,N):VU
B B(V,N) B=const.
U = V,dT=0dU U(T,V,N)
= V,dT=00dV
= +A(T,N)
(UT)V,N = +(AT)N TU(T,V,N),A(T,N)
(UT)V,N = ((F+TS)T)V,N=S+S(TT)V,N+T(ST)V,N (T,V,N):TU,TF,TS
T(ST)V,N = 32nR TS(T,V,N)(3.9.3.3.1)
(3.11.1.3.3) (UT)V,N = +32nR TU(T,V,N)
(AT)N = +32nR A(T,N)
A(T,N) = +32nRT
U = +32nRT+B U(T,V,N)
(3.11.1.3.4) U(T0,V0,N) = 0
A+B = +32nRT
(3.11.1.3.5) U = 32nRT U(T,V,N)(3.10.3.2.1)