Serlo: EN: Linear continuation: Unterschied zwischen den Versionen

Aus testwiki
Zur Navigation springen Zur Suche springen
imported>Sascha Lill 95
 
(kein Unterschied)

Aktuelle Version vom 10. Juni 2022, 18:39 Uhr

{{#invoke:Mathe für Nicht-Freaks/Seite|oben}} The principle of linear continuation states that every linear map is exactly determined by the images of the basis vectors. It provides an alternative way to characterize a linear map.

Motivation

So far, we have mostly specified linear maps by saying where each vector of a vector space V is mapped. Those are a lot of vectors, e.g. infinitely many for V=n. Is there a way to specify the map with less vectors? Perhaps finitely many ones?

For every vector vV of our starting vector space we have to provide the information to which vector of the target vector space it should be mapped. Every such vector can be represented within a basis: If V is a K-vector space with basis {b1,,bn} and vV, then there are unique coefficients λ1,,λnK such that v=i=1nλibi holds.

Now, consider a linear map f:VW into another K-vector space W. The basis vectors of V then have images f(b1)=:w1,,f(bn)=:wnW. Now, an important trick follows: we can use these images w1,,wn as building bricks to construct f(v): by linearity (= additivity + homogeneity) of f, we have that: Vorlage:Einrücken

This is amazing: For any vV, the image f(v) can be reconstructed using w1,,wn. Than means the information how the (often infinitely) many vV are mapped by f can be condensed in specifying only n vectors! For a linear map f:33, knowing three vectors w1,w2,w3 already suffices to know the image of all infinitely many vectors.

The following theorem assures mathematically that this reconstruction works for any finite dimensional vector space:

Principle of linear continuation Vorlage:Anker

Mathe für Nicht-Freaks: Vorlage:Satz Mathe für Nicht-Freaks: Vorlage:Lösungsweg Mathe für Nicht-Freaks: Vorlage:Beweis

Mathe für Nicht-Freaks: Vorlage:Hinweis

Examples

Example 1

Mathe für Nicht-Freaks: Vorlage:Beispiel

Example 2

Mathe für Nicht-Freaks: Vorlage:Beispiel

Example 3

Mathe für Nicht-Freaks: Vorlage:Beispiel Mathe für Nicht-Freaks: Vorlage:Frage

Properties of the linear continuation

In the following, V and W are two K-vector spaces, {b1,,bn} is a basis of V and w1,,wnW are vectors in W. Let f:VW be a linear map with f(bi)=wi for all i{1,,n}. Because of the above theorem such a linear map exists and it is unique.

Vorlage:Anker

Mathe für Nicht-Freaks: Vorlage:Satz Mathe für Nicht-Freaks: Vorlage:Lösungsweg Mathe für Nicht-Freaks: Vorlage:Beweis

Mathe für Nicht-Freaks: Vorlage:Satz

Mathe für Nicht-Freaks: Vorlage:Satz

Exercises

<section begin=konstruktion_lin_Abb/> Mathe für Nicht-Freaks: Vorlage:Aufgabe <section end=konstruktion_lin_Abb/> {{#invoke:Mathe für Nicht-Freaks/Seite|unten}}